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We derive generalized Noether identities for a system with noninvariant action 
integral under an infinite continuous group and deduce the string conservation 
laws of the system. We give a preliminary application to field theory and discuss 
the strong conservation laws for the BRS transformation and the weak conserva- 
tion laws of Yang-Mills fields. The Dirac constraint of the system is examined. 

1. INTRODUCTION 

Noether's (1918) second theorem refers to invariance of the action 
integral under an infinite continuous group parametrized by r arbitrary 
functions and their derivatives. If an action integral is invariant under such 
a group, then there exist r differential identities (Noether identities), which 
involve the variational derivatives (Euler-Lagrange expressions). These 
identities are discussed by Hilbert (1924) and by Bergman and Anderson 
(1949, 1951) in connection with electrodynamics and general relativity, by 
Drobot and Rybarski (1958-1959) in connection with hydromechanics, by 
Sundermyer (1982) in connection with gauge field theory, and by others in 
a general way. 

In the massive Yang-Mills (YM) theory the Lagrangian in general 
is not invariant under the gauge transformation; the gauge-invariant 
Lagrangian of Fermi fields and gauge fields is not invariant under the 
chirality transformation of the Fermi fields; the invariant Lagrangian under 
the BRS transformation is not invariant under the gauge transformation 
alone, etc. Therefore, we must discuss the transformation properties of 
systems that are not invariant under infinite continuous groups (Li, 1986). 
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In this paper we discuss a more general case of a Lagrangian involving 
high-order derivatives. We derive generalized Noether identities (GNI)  of 
the variant system, and using the GNI  we obtain certain strong conservation 
laws. We give a preliminary application to field theory: the transformation 
of  the gauge fields in connection with BRS invariance and strong conserva- 
tion laws are discussed, and it is shown that for certain gauge-variant 
Lagrangians of massive YM fields along the trajectory of the motion the 
GNI  can be converted to (weak) conservation laws. This differs from the 
usual result (first Noether theorem), where invariance under a finite con- 
tinuous group implies the conservation laws. Finally, from the GNI  we also 
examine Dirac's constraint of a gauge-variant system. 

2. GENERALIZED NOETHER IDENTITIES 

Suppose the system is described in terms of  the state functions or field 
variables ~b~(x), a = 1 , 2 , . . . ,  n. The Lagrangian density of the system, 
which may involve high-order derivatives of the state functions, is 

~q = ~ ( x ;  O~(x), O,%(,,)(x),...) (1) 

where 

~,~(m) = a~(m)~' ~ = (3,' a ~ . . . ) 4 , "  (2)  
y ,  

m 

Throughout the paper we adopt a Euclidean metric x = (r, i t ) .  The action 
integral is 

= J~ ~?(x; q,", O,~(m),...) d( l  (3) I 

We consider the transformation properties of the system under the 
infinite continuous group whose infinitesimal transformation is 

? 
x~, --> x~, = x~, + R i ~  'i 

(4) 

where ~i = ~i(x),  i = 1, 2 , . . . ,  r, are arbitrary independent functions, and 
Ri. and $7' are linear differential operators: 

R i #  = ait~ 4 a~.,. O. + �9 �9 �9 + ai t~v . . .p  a v  " �9 �9 Op 
(5) 

$7 = b7 + biau o v  -f-" �9 �9 -f- bi~u.. .o o u "  �9 �9 o o 

Under the transformation (4), suppose the change of the Lagrangian is 

8 ~  = U/~; (6) 

with 

U, = u~ (m) 0~,(,,) (7) 
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where a, b, 
action is (Li, 1985; Rosen, 1974) 

61= - ~ ( S ,  -O , ;R , . )~ '  da  

I ENd1 1 + d~, rI"~(") O,,(~)(Si - ~ i " ' .  a o , p g i p ) ~  +,,~f 6~vgi~,~i 
B Lm=0 

f Ui~ i dl~ 

where 

u~ (') are functions of the x, 0", ~O,~(.,). The change of the 

(8) 

- ( - 1 ) "  ~ wg(m) (9) u~(rn)~z~ a 

1 ~ 
~'~(") = - -  Z . ( l O )  

. m ] all permutation O~,~(m) 
of indices 

N--(m+l) 

/=o 

B is the boundary of domain 12. Since ~i(x) are arbitrary, we may choose 
~i(x) such that the boundary term in equation (8) vanishes, and repeat the 
integration by parts of the left-hand side of this identity. Again appealing 
to the arbitrariness of the ~i(x), we can force the boundary term to vanish, 
after which we can apply the fundamental lemma of the calculus of variations 
to conclude that 

-R,~,~-~O,~)- &(1)  = 0  (12) 

where the $7,/~i~, /~ are the adjoint operators with respect to $7, R0,, U~ 
respectively, defined by 

f gS~. fd l~=fafS~gdlI+[ .  ]. (13) 

where f  g are functions defined on domain 1~ and [. ]~ is a boundary term, 
and similar expressions hold for Ri., Ri,~ and U~, Ui. In (12), U/(1) indicates 
the adjoint operator applied to unity. The expressions (12) are called the 
GNI (or generalized Bianchi identities) of the system with Lagrangian 
variant under the transformation (4). 

Consider a special transformation 
.._> ! 

x~ x~=x~ (14) 
O ~ --> ~h~'= O"+a~' i+bi~ 0 ~  i 
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where a~" -- a~ (x; ~. ~. .)  and b~. = b~(x ,  0 ", 0.~.) according to (12), the 
GNI corresponding to (14) are 

a , - ~ - g - O . ~ b i . ~ g ) - U i ( 1 ) : O  (15) 

Under the transformation (14), if the Lagrangian ~ is invariant (up to 
a divergence term), then the GNI (15) reduce to the classical Noether 
identities. 

3. STRONG CONSERVATION LAWS 

According to the GNI,  for a certain case, we can obtain strong conserva- 
tion laws, i.e. conservation laws valid whether the equations of motion are 
satisfied or not. 

Consider the infinitesimal transformation 

._> / _ _  i 
X~, X ~ --  X~. + Ci~ ~ 

(16) 
0~-')0 ~̀" = O" +a~ '~  + bi~, " o ~ i  

ol  t ~  where c~, aT, b~ are functions of x, 0", ~b,~(~). Suppose the change of  the 
Lagrangian ~ is given by (6) and (7). From the expression (8) one obtains 
the identity 

6~  " . . . . . . .  '+O,j,. U,~' (17) 

where 

N - 1  
c~ i i r~.~(m)~ te~ ~ . , % ) ~  +~6~ci~ig (18) J~ = E .1,  ~ (m) tOi -  

m = 0  

multiplying the GNI (12) by If ~ and subtracting from (17) gives us the 
strong conservation law 

O~J~ - 0 (19) 

b . ~ i  J ,  = j ~ +  i~ 8~,~ --[u~(m)o,,~'..,~O~'--6,~,,(O',UT (~)) OA...,w~g i 

2 r n - - 1  - r ( m )  i + . ' - + ( - 1 )  6~,p(O~,A...~u, )~ ] (20) 

where 

m 

u~ ( ' ) - -  u~ ~A'~p, 0~(,.) = 8~a...~p (21) 
m 
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In non-Abelian gauge theory, the Lagrangian without ghosts violates 
unitarity and hence the effective Lagrangian is 

1 . 1 '~ 2-Ou.r/aOb.,~r/ (22) 5Geft=__~Fa~,F~,,+~__~(O.A~ ) , a  b 

a a 

where A t, are YM fields, F~,~ are field strengths, and r/*~, r/b are the ghost 
fields. As is well known, the Lagrangian (22) is invariant under the BRS 
transformation. But if we consider only the transformation of the gauge 
fields, fixing the ghost fields, then 

a 6A~.= D~,.O b , 6r/] = 0, 6r/b=o (23) 

where 0 a--- -s% a, and D~,. represents the covariant derivative 

a a a c D5r = 6b Or. -- f bcA~ (24) 

Under the transformation (23), the effective Lagrangian (22) is variant. 
According to (19), we obtain the strong conservation law 

0,~ L =0 (25) 

where 

8s a 1 
J .  =j~ +--g-~-~ ~ 0 - - -  [(0.A:) 0.0,, -O.(O~A~)Oa] 

o R .  Ok 

a 1 b c +fbc[-~(O~A,,)A-~Oa+Ogr/~+r/5Oa] (26) 

1 a b 
jt~=-[Fa,~,~+--dt~.~.(Oxaa,x)]Db.,O (27) 

Similarly. if we fix the gauge fields A~ and change only the ghost fields 
r/. (or r/b), the strong conservation law (19) implies a trivial identity. 

4.  T H E  M A S S I V E  Y A N G - M I L L S  F I E L D S  

We give some preliminary applications of GNI to the massive YM 
field theory. 

Consider a Lagrangian of the massive YM fields (Hsu and Sudarshan, 
1974; Zhao and Yan, 1978) 

~ :  1 a 1 2 a 2 a -zF~,~F,~+~m (A . )  "-F X a O ~ A ~ ' 4 - 1 a ( x a )  2 (28) 

where X~(x) are the multiplier fields. Under the gauge transformation 
a a 6A~ = Db~. ~5(X) (29) 
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where ~b(x) are arbitrary functions, the GNI  (15) can be converted to 

D . D ~ F ~ = O  (30) 

Along the trajectory of the motion 
a b 2 a , a Db~F~ + m A . - a . X  =0  (31) 

O~A~ + aX a = 0 (32) 

the GNI  (15) can be reduced to 
a b 2 a a 3~(Db,.F~,~+m A~-O~X ) =  2 a a m O . A . -  Db~ a~X b (33) 

Since a ~ a ~ F ~  = 0, one obtains (weak) conservation laws 
a Ofl~ = 0 (34) 

- -  a b c J.  - fbc (A~F.~  + AbX ~) (35) 

For pure massive YM fields (Xa----O), along the trajectory in this 
circumstance the GNI  become conserved current equations but do not give 
the Lorentz condition as Iosif 'yan and Konopleva (1971) say. 

Similarly, the Lagrangian 
6 ~  1 a �9 a a = -zFa~F~,~+�89 2 -  ~T. (0. - t T  A,,)~b (36) 

is variant under the local gauge transformation 

tp . O'= ~b + iTa~"(x )~  
(37) 

a" a + o ~  ~,b(x ) A~ ~ A .  = A~ 

where T ~ are the generators of the gauge group. Using the GNI,  along the 
trajectory we obtain 

Ofl~ = 0 (38) 
a - -  - - -  a a b c Jr  - afiT~T tb + f b~A~F~ (39) 

Under the transformation of the Fermi fields 

~b ~ ~b + i~(x)3,5~b, ~b -~ ~b + ~bi75 ~(x)  (40) 

the change of the Lagrangian (36) is 

~.Lf = - i ~ ( x )  a~j 5, j5  = ~7/Y~ ~b (41) 

According to the GNI  along the trajectory of the motion one obtains 
conservation of the axial current, O~j 5 = O. 

From the above example, we see that the GNI  may be converted into 
the equations of current conservation even if the Lagrangian of the system 
is not invariant under the specific transformation. This differs from the 
usual result (first Noether theorem), where invariance under a finite con- 
tinuous group implies the conservation laws. 
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5. DIRAC'S  CONSTRAINT 

As is well known, if the Lagrangian of the system is gauge-invariant, 
then the system has a Dirac constraint. For variant Lagrangians we can 
further examine the Dirac constraint of  the system using the GNI .  

I f  the Lagrangian ~ involves no higher derivative of  g,~ than the first 
order, under  the transformation 

=ai  ~ + b i ~ o , ~  (42) ~x~  = O, &p,~ ,, i ,~ i 

o t  o t  where aT, bi.  are the functions of  x, r , suppose the change of the 
Lagrangian ~ is 

8 ~  - U ~  i = (u~ + u~ a~ + u~ ~ a~ a.)  ~ (43) 

where ui, u~, u~ ~ are functions of  x, ~ ,  ~b,~. According to the G N I  (12), 
one obtains the identities (15). I f  u~ ~ do not involve the derivative of  ~ ,  
then 0i(1) do not involve the third-order derivative of  4J ". When the 
expressions 8Za/8~b" are substituted into the identities (15), this leads to 
terms containing third derivatives of r and these must cancel each other 
irrespective of  other terms (Bergmann, 1949): 

b~ t 4 ~  ,~,~ iA'" ~p 'e,Ao-p = 0 (44) 

where 

H ~p ~ -- 02~/0@~,~ Otp~p, (45) 

The conditions (44) are to be fulfilled for any third derivative of  #s ~, and 
one obtains 

b ~  t - t ~ #  ih  at Jr ( : rp (Ao 'p )  - -  0 (46) 

where (Atrp) indicate that the expressions are symmetrized with respect to 
these indices. Letting h = or = p, we get 

b~ u ~ '  = 0 (47) i 4  ~ ~ 4 4  

For the gauge transformation, if the b~% are not all identically zero, which 
implies det[H~4~[ = 0, then the Hessian of ~s is singular, and therefore the 
system has a Dirac constraint. 

Suppose the Lagrangian ~ = s  where ~o is invariant (up to a 
divergence term) and ~ is variant under such a transformation. I f  s does 
not involve a derivative of  g,~ or at most involves first-order terms of g,%, 
then obviously D~(1) do not involve ~b~p. For example, the Lagrangian of 
a pure massive YM field has the properties, and has a Dirac constraint. 
Hence, for some noninvariant systems, the G N I  can give criterion for the 
system to have a Dirac constraint. 
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